
Introduction
Since its first formal definition more than a decade ago, 
metabolomics,  or, the comprehensive analysis of  all me-
tabolites present within a biological system, has attracted 
growing interest in clinical research by academia, industry 
and government labs. This is most prevalent in biomark-
er and drug development applications where a consider-
able change has been witnessed in how new diagnoses, 
prognoses, and therapeutic options are being discovered 
and developed using omic technologies. Moreover, many 
chronic diseases suggest a strong metabolic involvement 
or even a clear metabolic cause, including cancer. Togeth-
er with the other omic disciplines, including genomics 
and proteomics, metabolomics plays a key role in the im-
plementation of  personalized medicine; evidence-based 
medicine designed for individually designed healthcare 
strategies. In turn, biomarker discovery and the under-
standing of  biochemical pathways typically rely on a 

multimodal approach. Among these modalities, there 
continues to be a growing interest in CE-MS based de-
velopment and implementation in clinical development.

Formulating the problem 
Depending on how you classify the metabolome, there 
is a complex chemical space separated by hydrophilici-
ty, polarity and size, excluding a broad range of  metab-
olites classified as lipids, separately referred to as lipid-
omics. This class of  metabolites also covers a large range 
of  physical properties for which specifically designed 
platforms work the best. For example, for years liquid 
chromatography-mass spectrometry (LC-MS) has been 
used to capture a host of  hydrophilic and hydrophobic 
metabolites, while gas chromatography-mass spectrom-
etry (GC-MS) has been used to capture small molecular 
weight metabolites. For this review, the metabolome re-
fers to endogenous molecules with a molecular weight 
typically less than 1000 Kd.
To measure, catalogue, and compare the entirety of  the 
metabolic space, the implementation of comprehensive 
mass spectral databases was needed (e.g., Human Metab-
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Capillary electrophoresis–mass spectrometry (CE-MS) is a powerful orthogonal technique 
capable of  filling in gaps in the identification, quantitation and isomeric resolution of  many 
small hydrophilic and charged metabolites. The metabolome is a large complex mixture of  
molecules for which not one technique nor a combination of  techniques can optimally identify 
and measure it in it’s entirety. LC-MS, GC-MS and NMR have been the widely used for me-
tabolomics for the past 20 years for a wide range of  applications, each technique having shown 
uniqueness and advantages, for specific applications or target metabolic chemical space. CE-
MS captures a unique metabolic chemical space beyond these standard methods providing 
another window into metabolomics profiling. This review will focus on the recent publications 
published within 2016 focusing on biotechnology and pharmaceutical applications of  CE-MS.



olome Database (HMDB), METLIN, MassBank, LIP-
ID MAPS, LipidBlast, NIST 14). These databases have 
helped drive the field and enable untargeted discovery by 
CE-MS.
The HMDB, for example, lists thousands of  metabolites, 
their physical properties and, for many common metabo-
lites, metabolite concentrations in various biological ma-
trices (blood, urine, saliva, CSF). While METLIN reports 
structure and mass for thousands of  metabolites, small 
peptides, and xenobiotic metabolites found across the 
plant and animal kingdom.
Because of  this diversity in physical properties and size 
of  the metabolome in biological systems, there has been 
a need for the development of  several analytical pro-
tocols based on different chromatographic methods to 
select specific subgroups of  metabolites based on these 
different chemical properties beyond the technical capa-
bilities of  LC-MS and GC-MS. These new methods have 
their own advantages for selecting specific types of  mol-
ecules: lipids, nucleotides, aminoacids or steroids. Non-
mass spectrometric methods such as nuclear magnetic 
resonance (NMR) and non-chromatographic methods 
such as matrix-assisted laser desorption- time of  flight 
(MALDI-TOF) imaging are successfully being used for 
selected metabolomic analyses. The focus of  this review 
is recent publications that use CE-MS to extend the po-
lar metabolome beyond what is observed by LC-MS and 
GC-MS.

Metabolomics – current methods
Using the appropriate technology can be a critical de-
cision when starting a discovery program. Different 
methods or technical platforms have advantages within 
certain chemical spaces, and the choice of  platform can 
effect linear dynamic range, lower level of  quantitation, 

resolution of  isomers, baseline biological noise and in-
source ion suppression. No universal methods exist so 
care should me made when making conclusions in eval-
uating unbiased and untargeted metabolomic data. With 
the diversity of  metabolites captured by any one method, 
one can expect a range of  different responses effecting 
dynamic range and linearity of  response depending upon 
the specific metabolite properties. The choice of  tech-
nology can affect the number of  false positives, how to 
assess quality control and the type of  statistical analysis in 
any metabolomics study.
The most commonly used separation method uses 
high-pressure liquid chromatography (HPLC). HPLC 
methods vary to accommodate a broader range of  me-
tabolites. Ion pairing, ion exchange, hydrophilic interac-
tion chromatography (HILIC) and reverse phase columns 
can all be used to select specific subtypes of  metabolites.  
Capillary electrophoresis (CE) offers a novel approach 
with distinct advantages as seen in a growing list of  pub-
lications.

CE mechanism
Understanding that HPLC and GC methods are not all 
inclusive, Smith et al. [1] demonstrated the potential of  
interfacing CE with mass spectrometry (MS) in 1987, al-
though it was not until Soga et al. [2] published in 2002 
that CE-MS could be performed  with high reproducibil-
ity and sensitivity for biological applications. CE works 
using electrophoretic movement or electroosmotic flow 
(EOF) to govern transport and separation of  metabo-
lites. 
EOF is a phenomenon where the electrolyte or running 
buffer solution itself  flows inside the capillary. The flow 
of  the electrolyte solution is the main driving force that 
pushes samples into the mass spectrometer side of  the 

6

BUKO AM        J. APPL. BIOANAL

Contents
Introduction......................................................................................................................................................................................5
Formulating the problem.................................................................................................................................................................5
Metabolomics – current methods...................................................................................................................................................6
CE Mechanism .................................................................................................................................................................................6
Early problems..................................................................................................................................................................................7
Early developments..........................................................................................................................................................................7
Current Advantages and Biotechnology Applications ...............................................................................................................7
Over 200 CEMS publications in 2016...........................................................................................................................................8
Reviews.......................................................................................................................................................................................8
Technology and Protocols ...........................................................................................................................................................9
Medical Applications......................................................................................................................................................................13
Future...............................................................................................................................................................................................13
References........................................................................................................................................................................................14



capillary.  A fused-silica capillary contains surface charges 
of  silanol groups present on the inner walls. The silanol 
groups on the capillary inner wall are ionized presenting 
an overall negative surface. Opposing ions in the elec-
trolyte solution are attracted to the inner wall surface 
to achieve a balance of  electric charges, resulting in the 
formation of  a double-layer with ionized silanol groups.  
Under these conditions, a potential difference is created 
very close to the inner wall. The application of  a volt-
age to both ends of  the capillary attracts the positively 
charged ions of  the diffuse double-layer to an anode. In 
contrast, the silanol groups cannot move due to the fixa-
tion on the wall surface and the entire electrolyte solution 
in the capillary is directed toward the anode with the mi-
gration of  the positively charged ions, thereby generating 
a flow.
The degree of  mobility of  any compound relative to 
others is due to variations in their ionic radius and size 
and charge of  the electrolyte filling the capillary. A com-
pound or metabolite with a larger ionic radius and small-
er charge would have limited mobility compared to small, 
more polar species. Compounds or metabolites with a 
smaller ionic radius and higher charge would have high 
mobility.  Hence controlling the electrical gradient across 
the capillary and pH of  the electrolyte solution are two 
of  the most important parameters in controlling metab-
olite separation into the mass spectrometer.
Hence CE-MS offers a totally different approach to me-
tabolite separation prior to mass spectrometric detection.  
Earlier reviews go into more detail on how CE works, the 
theory of  electroosmotic flow (EOF) and CE-MS inter-
faces [3,15,16,17,18].

Early problems
Despite the strong need to broaden the ability to measure 
the hydrophilic metabolic space, the usage of  CE-MS has 
been relatively slow. Sensitivity, mass spectrometric sta-
bility, migration time reproducibility, and correction soft-
ware for migration time shift have all contributed to slow 
uptake. In addition, limited commercial CE-MS solutions 
and the lack of  CE-MS availability in core academic, gov-
ernment or industrial laboratories has limited develop-
ment in the field. Since CE-MS may measure many new 
molecules, not in LC libraries, the creation of  new small 
molecule libraries and the peak picking and warping soft-
ware needed for CE alignment has also slowed progress.  
Lastly, the ability to provide a stable, sensitive, and reli-
able interface has been a critical issue to overcome.

Early developments
In 2002, Tomoyoshi Soga first developed a metabolome 

analysis method based on CE-MS, which enabled the 
simultaneous analysis of  several thousand charged me-
tabolites by cationic and anionic methods [1,7,11,14].  
Since then, CE-MS began to grow as one of  the standard 
methods in bioscience research. See Soga’s recent review 
in 2015 [18]. Soga and other labs have clearly demon-
strated that most of  these early issues and concerns have 
been overcome by technological improvements, hence 
the growing list of  publications in this field since 2002.  
CE-MS protocols have been developed to support met-
abolic measurements, both relative and quantitative, in a 
large variety of  sample types including urine [4,5,8], bac-
teria [6], CSF [9], neurons [10] and brain [12].

Current advantages and biotechnology applications
Multiple comparative studies reviewed and discussed by 
Kok et al. [13,17] have shown that the metabolome frac-
tion mapped by CE–MS is usually not covered by other 
techniques. Importantly, CE also gives complementary 
information to HILIC [13], as well as, significantly better 
peak shape in many cases. It is therefore not surprising 
that CE-MS has already been considered for multiple 
metabolomics studies covering several applications, from 
aging [19], amino acid analysis [20,21], bacteria [22-26], 
Cancer [27-43], CNS [46-53], CVD [54-58], diabetes [59-
65], lifestyle [61-71], kidney disease [72,73], liver disease 
[74-82], the microbiome [83-89] and many other biolog-
ical areas[90-108]. 
CE-MS is the most suited technique for analyzing phos-
phorylated metabolites, amino acids or metabolites from 
the TCA cycle and glycolytic pathways, all being key 
metabolites in multiple biochemical processes and gain-
ing remarkable importance in metabolomics, including 
cancer research. Indeed, isomeric compounds such as 
citrate/isocitrate, as well as, leucine/isoleucine/also leu-
cine, can be resolved and quantitated in biological matri-
ces [153].
Another great advantage of  CE-MS is its high quantifica-
tion accuracy. CE-MS is less affected by LC-MS associat-
ed matrix effects, such as ion suppression and enhance-
ment, due to the lack of  mass transfer between solid 
and liquid phases in CE. CE uses uncoated fused silica 
capillary columns, the separation occurring by electrical 
interactions or EOF, unlike LC reverse phase and HILIC 
methods where peak broadening occurs by mass transfer 
between the liquid and solid phase. CE provides a flat 
solvent front compared to the convex front with HPLC 
separation systems. Peak spreading by CE is only due to 
longitudinal diffusion across the capillary column thus 
producing separations with better peak shape, greater dy-
namic range for certain metabolites over LC-MS meth-
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Table 1. Reviews on capillary electrophoresis-mass spectrometry (year 2016)

Authors Title Year Ref.
Dao-Quan Tang, Ll Zou, Xiao-Xing Yin, 
Choon Nam Ong

HILIC-MS for metabolomics: An attractive and complementary 
approach to RPLC-MS

2016 [109]

Klampfl CW. Capillary Electrophoresis-/Liquid Chromatography-Mass Spec-
trometry 2016

2016 [110]

Ramautar R. Chapter one: Capillary Electrophoresis-Mass Spectrometry for 
Clinical Metabolomics

2016 [111]

Zhang W, Hankemeier T, Ramautar R. Next-generation capillary electrophoresis-mass spectrome-
try approaches in metabolomics.

2016 [112]

Ramautar R. CE-MS in metabolomics: status quo and the way forward. 2016 [113]
Kohler I, Giera M. Recent advances in liquid-phase separations for clinical metab-

olomics.
2016 [114]

Iadarola P, Fumagalli M, Bardoni AM, 
Salvini R, Viglio S.

Recent applications of  CE- and HPLC-MS in the analysis of  
human fluids.

2016 [115]

Garcia A, Godzien J, Lopez-Gonzalvez A 
and Barbas J.

Capillary electrophoresis mass spectrometry as a tool for untar-
geted metabolomics

2017 [116]

Maier TV, Schmitt-Kopplin P. Capillary Electrophoresis in Metabolomics 2016 [117]
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ods. CE has also been favourably compared to HILIC 
separations offering higher flexibility, lower complexity, 
better RT reproducibility, higher peak capacity and better 
peak shape [17]. Another challenge to the popularity of  
CE-MS has been the effect of  high salt concentrations on 
migration time reproducibility. High salt concentrations 
in the sample can lead to stacking and peak spreading 
affecting metabolite resolution, identification and mass 
accuracy. However, this issue can be avoided by determi-
nation of  an appropriate dilution ratio for general types 
of  samples (blood, tissue, urine, saliva etc.). Alternatively, 
some sample types may require a pre-test utilizing a small 
amount of  sample. Lastly, one could use some measure-
ment, such as electric conductivity or creatinine concen-
tration in urine, to determine appropriate dilution ratio.
CE-MS systems are currently available from SCIEX 
CESI 8000 (Redwood City, CA USA) and Agilent 7100 
CE (Santa Clara, CA USA) providing both instruments 
and software as a viable path for individual laboratories.  
A contract research organization (Human Metabolome 
Technologies –Tsuruoka, Japan) can also provide CE-MS 
services, both quantitative and relative measurements for 
any matrix with protocols for any type of  metabolomics 
interest.
With many technological challenges overcome, the ad-
vantages of  CE-MS are clearly understood. With the 
availability of  commercial CE-MS instrumentation, de-
velopment in academic labs and contract labs and with a 

growing list of  publications and reviews [1-108], we saw 
in 2016 a balance of  papers reflecting the diversity and 
growth of  CE-MS in biotechnology and drug develop-
ment.

Over 200 CEMS publications in 2016
In this paper recent CE–MS applications developed for 
metabolomics covering the literature from Jan 2016 to 
Dec 2016 are outlined in Tables 1, 2 and 3. Attention 
will be paid to CE–MS approaches for the profiling of  
metabolites in the fields of  biomedical, clinical and mi-
crobial metabolomics.

Reviews
Reviews provide a short cut to obtaining specific and per-
tinent information about a topic. They also give a time 
table context for developing technologies or research ar-
eas.  Several reviews of  CE-MS were published in 2016 
summarizing the growth of  this field. Table 1 summaries 
10 reviews in 2016 on CE-MS, each with a different focus 
or agenda.  Issue 37 of  the Journal Electrophoresis [110] 
provided an entire publication to LC-MS and CE-MS, 
demonstrating equal status, although the CE-MS appli-
cations were not specific to metabolomics.  Hankemei-
er’s laboratory at Leiden University provided 4 separate 
reviews [111-114] covering different aspects of  CE-MS 
from growing applications to technical developments.  
Tang et al. [109] provides a discussion comparing HILIC 
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Table 2. Technical and methods papers on CE-MS based metabolomics (year 2016)

Authors Title Keywords Ref.
Hernández-Mesa M, Cruces-Blanco 
C, García-Campaña AM.

Capillary electrophoresis-tandem mass spectrometry com-
bined with molecularly imprinted solid phase extraction as 
useful tool for the monitoring of  5-nitroimidazoles and their 
metabolites in urine samples.

SPE on-line [118]

Yamamoto M, Ly R, Gill B, Zhu Y, 
Moran-Mirabal J, Britz-McKibbin P.

Robust and High-Throughput Method for Anionic Metab-
olite Profiling: Preventing Polyimide Aminolysis and Cap-
illary Breakages under Alkaline Conditions in Capillary 
Electrophoresis-Mass Spectrometry.

Anionic 
metabolites

[119]

Boizard F, Brunchault V, Moulos P, 
at al. 

A capillary electrophoresis coupled to mass spectrome-
try pipeline for long term comparable assessment of  the 
urinary metabolome.

Beveld tip [120]

D’Orazio G, Hernández-Borges J, 
Asensio-Ramos M, Rodríguez-Delga-
do MÁ, Fanali S.

Capillary electrochromatography and nano-liquid chromatog-
raphy coupled to nano-electrospray ionization interface for 
the separation and identification of  estrogenic compounds.

Multiplat-
form

[121]

Hiroyuku Yamamoto and Kazunori 
Sasaki

Metabolomics-based approach for ranking the candidate 
structures of  unidentified peaks in capillary electrophoresis 
time-of-flight mass spectrometry

Peak identi-
fication

[122]

Gulersonmez, M. C., Lock, S., 
Hankemeier, T., Ramautar, R., 

Sheathless capillary electrophoresis-mass spectrometry for 
anionic metabolic profiling. 

Shetless 
interface

[123]

Pont, L., Benavente, F., Jaumot, J. et 
al.  

Metabolic profiling for the identification of  Huntington 
biomarkers by on-line solidphase extraction capillary electro-
phoresis mass spectrometry combined with advanced data 
analysis tools.

SPE on-line [124]

González-Peña D, Dudzik D, Coli-
na-Coca C et al.

Multiplatform metabolomic fingerprinting as a tool for  un-
derstanding hypercholesterolemia in Wistar rats.

Multiplat-
form

[125]

Mastrangelo A, Martos-Moreno GÁ, 
García A et al. 

Insulin resistance in prepubertal obese children correlates 
with sexdependent early onset metabolomic alterations.

Multiplat-
form

[126]

Mastrangelo A, Panadero MI, Pérez 
LM et al.

New insight on obesity and adipose-derived stem cells using 
comprehensive metabolomics.

Multiplat-
form

[127]

chromatography to capillary electrophoresis with advan-
tages and challenges for both. In Methods in Molecular 
Biology (2016) a whole chapter is provided [117] on CE-
MS in metabolomics with detailed protocols and techni-
cal information for those getting into this field.

Technology and protocols
Innovative technologies continue to advance through the 
ingenuity of  researchers, providing reliable improvements 
in the technologies and protocols.  Such advancements 
are needed in order to provide solutions to increasing-
ly difficult analytical problems seen in the medical and 

pharmaceutical fields. Over the past year, several pub-
lications (Table 2) are noted demonstrating new ideas 
and concepts designed to expand and improve CE-MS.  
Untargeted profiling, when including multiple analytical 
methods, provides the greatest opportunity to discover 
biomarkers, understand biological pathways and identify 
new drug targets.  The University of  San Pablo published 
3 papers in 2016 [125-127] using multiple mass spec-
trometry based untargeted technologies [LC-MS, CE-MS 
and GC-MS] to create large data rich metabolomics pro-
files in plasma [125], serum [126] and from cell culture 
[127] to identify biomarkers in obesity and hypercholes-
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terolemia. D’Orazio et al. [121] compared nano LC and 
CE-MS to quantitatively measure estrogenic metabolites 
from mineral water. These nano techniques were used 
to minimize sample volumes and reagent costs.  While 
the phenyl-LC method provided the better calibration 
curves, CE-MS, using only electro-osmotic flow (EOF), 
demonstrated the capability to resolve and measure 11 
estrogens including two isobaric compounds.  
One of  the long-standing issues with CE-MS is the ease 
and stability of  the CE to MS interface.  Ramautar [123] 
and Boizard [120] published on their work to improve 
the reliability and sensitivity of  the MS interface.  Ramau-
tar provided data on using a sheathless capillary interface 
to improve the sensitivity with profiling glioblastoma cell 
lines, while Boizard designed a beveled capillary tip to 
improve the stability of  the CE-MS interface, examin-
ing one sample over 130 times in 4 years. Improvements 
in sample preparation prior to CE separation was also 
seen in 2016 with two papers [119,124] using solid phase 
extraction [SPE] to improve detection sensitivity. Pont 
et al. [124] utilized on-line SPE with CE-MS to identify 
biomarkers of  Huntington’s disease from mouse plasma. 
[R6/1]. Yamamoto et al. [119] provide protocols to help 
stabilize the long-term stability of  anionic CE-MS by 
developing fused silica friendly methods. Lastly, Yama-
moto and Sasaki [122] provided multi-step processes to 
aid in the identification of  unknowns in CE-MS using 
accurate mass and data base mining. Protocols to expand 
the know metabolome are critical to exploiting the full 
potential of  CE-MS.

Medical applications
While there were over 200 CE-MS based publications in 
2016, this review has focused on those with metabolo-
mics applications and methods. Those 25 publications 
related to drug development are summarized in Table 3.  
These publications cover many therapeutic and disease 
areas, different sample types and study sizes reflecting the 
diversity and growth in this area.
Oncology has a great unmet need for biomarkers and 
treatment protocols. Omic technologies, like metabo-
lomics, provides pathways to understanding cancer and 
treatment effects in both pre-clinical and clinical settings.   
Colorectal cancer (CRC) is one area of  active clinical 
research. Two publications [131,132] were looking at ei-
ther serum or colon tissue from CRC patients to develop 
markers for early detection or a more accurate diagnosis 
using CE-MS. Hepatocellular carcinoma (HCC) is a pri-
mary malignancy of  the liver and occurs predominant-
ly in patients with underlying chronic liver disease and 
cirrhosis, now the third leading cause of  cancer deaths 

worldwide. Hirata et al. [134] and Soga et al. [133] used 
CE-MS in cells and serum to help understand HCC at the 
cellular level and discover potential biomarkers. Hirata’s 
work provides additional support for FBP1 as a thera-
peutic target, while Soga delivers a series of  inflammato-
ry peptides in serum that helps to differentiate Hepatitis 
B and Hepatitis C effects on HCC patients. Other pub-
lications look at diverse samples types; saliva [146], cell 
culture [151] and brain tissue [152] for biomarkers and 
pathway analysis of  oral cancer, osteosarcoma and glio-
ma. CE-MS  provides accurate measurements of  critical 
small molecules associated with aberrant cancer metab-
olism and inflammation, representing targets for cancer 
therapeutic development.
While cancer research represents a major investment in 
the medical community, diseases of  the central nervous 
system (CNS) continue to grow. Bipolar disorder (BD), 
formerly called manic depression, causes extreme mood 
swings that include emotional highs (mania or hypo-
mania) and lows (depression). Three groups published 
using 3 different sample types, plasma [137], CSF [130] 
and serum [136] to both understand the biology of  BD 
and seek biomarkers for diagnosis. Hashimoto [130] aptly 
used the specificity of  CE-MS to understand the role of  
mitochondrial dysfunction in BD, finding isocitrate as a 
diagnostic biomarker in CSF. Likewise, the same group 
looked at serum TCA cycle metabolites using CE-MS to 
resolve and identify specific energy metabolites in BD 
sera. While Fuji [138] used the uniqueness of  CE-MS 
to identify metabolites in brain tissue specific to Schizo-
phrenia.
The remainder of  Table 3 lists publications related to 
lifestyle; alcohol intake [125], physical activity [150]], mi-
crobiome [142,145,147] and to various diseases; eye dis-
ease [140, 141], inborn errors of  metabolism [143], kidney 
disease [144], diabetes [139], metabolic syndrome [149], 
osteoporosis [129] and encephalopathy [148]. These 
publications represent a variety of  subjects and sample 
types [serum plasma, cultured cells, PBMCs, tissue] that 
are amendable to CE-MS metabolomics profiling, spe-
cifically, polar hydrophilic metabolites found in critical 
pathways such as amino acid metabolism, central energy 
metabolism, inflammation, stress oxidative pathways, gly-
colysis, cancer metabolism, and lipid transportation.

Future
The successful implementation and integration of  me-
tabolomics in personalized medicine and drug develop-
ment will rely on the combination of  high-throughput 
analysis, large metabolite coverage, accurate quantitation, 
high-value data and low-cost analysis. This paradigm can 
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only be achieved using state-of-the-art analytical tech-
nologies and computational techniques combining many 
modalities and data input with growth in technology and 
implementation. CE-MS is poised to make significant 
contributions to these fields as the technology and avail-
ability to CE-MS continues to increase.
Multi-platform, multi-omics approaches with large stud-
ies will develop high-powered algorithms for diagnostic 
and prognostic studies. Increasing CE databases, im-
provements in sheathless interfaces and increases in MS 
detection capability will further push the field forward 
helping to find solutions to critical questions in drug de-
velopment and biotechnology.
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