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ABSTRACT 

Multi-omics is a rising filed in –omics science. Despite progress in the multiple single 

–omics platform, the holistic look at the complex nature of the human cell, disease, and 

other biochemical pathways remain undiscovered. The multi-omics is considered the 

most integrated system currently available to obtain and measure the biochemical data-

driven information for biomedical problems. The current review will look at the factors 

that play important roles in the rise of the multi-omics field and its application in 

biomedical studies.  

In this review article we present some of the techniques and methods used to determine 

the short-term and long-term release of these monomers from modern dental materials 

and prove that analytical chemistry and especially bioanalysis can be a powerful tool in 

dentistry. 
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1. Introduction: 

Sometimes a few similar good things, when combined, can create a great outcome! The 

integrated omics or multi-omics has done this - by opening up a holistic look at the 

biological system by combining multiple omics systems [1]. The “Omes” table at Yale 

University records the first study with the “omics” keyword - published in 1938 in 

Pubmed [2]. The expansion of the field was so rocketed and within a short period of 

time, the field now has a large number of branches includes genomics, proteomics, 

transcriptomics, metabolomics and so on. The non-biological expansion of omics fields 

are also wide- foodomics, volatolomics, phytochemomics and many more. A search on 

Scopus with “omics” keyword during 2015-2019 has illustrated the trend of –omics, 

based on 9342 documents-clearly showing the rise of this field. The main field of 

studies was dedicated toward the biochemical and biomedical sciences whereas those 

studies were funded by the major world research organizations. During the last five 

years, almost 40% increase in the omics work was recorded. Among those, 20% of the 

studies were concentrated on the multi-omics approach, which is an indication of the 

expanding multi-omics field (Fig. 1). 
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2. Driving forces of multi-omics fields: 

The primary reason for the expanding multi-omics fields during the last 10 years was 

the development of high-throughput and high-resolution technology for biological 

problem-solving [3]. One of the examples is expression array, a method to identify 

candidate marker genes of disease - could generate an overwhelming amount of data of 

hundreds of thousands of genes in a single run [4]. Another  important innovation was 

the development of high-resolution mass spectroscopy. The HR-MS has emerged with 

extensive identification power that it has become an essential part of environmental, 

biochemical and chemical sciences [5]. Fig 2 presented a schematic to show the 

applications of the high-throughput and high resolution methods in omics fields. 

The development of data science is the most critical and meaningful boost to the multi-

omics field. To find the possible meaningful conclusion of the large data set produced 

in multi-omics, the data science including machine learning and artificial intelligence 

have been frequently used from their development [6]. The readers are referred to well 

written articles for more detailed reviews on multi-omics data integration and analysis 

[6-11]. A few main challenges of data integration method are still remain unsolved; 

limited biological knowledge guided integration and the heterogeneity of the data from 

different omics sources are considered the root of this problem.  

 

3. Application of Multi-omics in biomedical research:  

The table 1 listed the application of multi-omics in the different biomedical field. A 

brief introduction of the multi-omics application to cancer research, kidney disease, 
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infectious disease, cardiac disease and few other biomedical fields have been discussed 

in the following section. 

a. Cancer research 

The multi-omics study investigates the cancer causative tumor associated with genetic 

background. An integrative genomic study showed the evidence of the strong 

association between genetic status and multi-omics data for PCCs/PGLs type tumors 

(Pheochromocytomas and paragangliomas) [12]. Karnovsky et al., have used the multi-

omics approach to classify the tumor subtypes which linked the metabolomics and gene 

expression data [13]. A multi-omics study combining transcriptomics, metabolomics 

and proteomics profiles of retinoblastoma cancer cell line has reported that 18 miRNAs 

possibly implicated with retinal cancer [14]. The breast cancer-causing gene association 

has been tracked down using an integrative whole-genome copy number and expression 

data [15]. 

Identifying the survival rate of cancer – the relative time, patients would live after 

diagnose compare with health individuals, would improve the patients’ care and 

treatment. Multi-omics approaches using RNA sequencing (RNA-Seq) and miRNA 

sequencing (miRNA-Seq) from The Cancer Genome Atlas (TCGA) could predict the 

survival rate of the liver cancer with a deep learning-based model [16].  A Bayesian 

model for discovering prognostic cancer subtypes by integrating gene expression and 

copy number variation data has been reported by Yuan et al. [17]. Using a multi-

platform genomic data, a new model has been reported to highly correlate with survival 

time in ovarian cancer patients [18].  
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b. Chronic kidney disease 

Integrative omics on the epithelial cells helps the diagnosis of progressive renal, 

interstitial fibrosis and inflammation. A gene expression data from Gene Expression 

Omnibus (GEO) [19] and proteome data from Human Protein Atlas (HPA) [20] have 

been used for a genotype-phenotype relationship in the human kidney [21]. The result 

has indicated a total of 267 potential metabolic biomarkers for kidney-related diseases 

using a multi-omics model.  

There are several omics experimental datasets available to formulate the hypothesis for 

Chronic Kidney Disease (CKD). Such as Urinary Pathway Knowledge Base (KUPKB) 

[22], Chronic Kidney Disease database (CKDdb) [23] and so on [24]. Brain Abundant 

Signal Protein 1 (BASP1) has been identified as to modulate the albumin induced 

cellular death of kidney cell in a multi-omics study [25]. Authors have used albumin-

induced BASP1 expression data and KUPKB database to find the association with 

patients with type 2 diabetes. A multi-omics study combining proteomics and 

metabolomics has been reported to understand the vascular changes including the renal 

disease in diabetes mellitus arteriopathy [26]. The proteomics data have also been 

integrated with Gene Ontology (GO) for interactomics of metabolites and signaling 

pathway analysis.  

c. Infectious disease 

Host-pathogen interaction in infectious disease is an important aspect for the 

understanding  disease biomarkers, prognosis, and treatment [27]. Multi-omics studies 

have been used in this field particularly tuberculosis (TB), autoimmune disease and 

HIV.  Genomics and transcriptomics have been used to stimulate with Escherichia coli 
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(E. coli) LPS, influenza virus, or IFN-β expression on human dendritic cells. A set of 

121 genes were found associated with those exposures in that study [28]. The human 

macrophages and Staphylococcus aureus interactions in terms of proteomics and 

kinomics have also studied. Authors have reported the major macrophage signaling 

pathways that are triggered by pathogens [29]. An interesting study used 

metagenomics, metatranscriptomics, or metabolomics application of multi-omics on 

the identification of probiotic candidates for the Chytridiomycosis and other emerging 

infectious diseases in wildlife [30].  

A longitudinal multi-omics study has been conducted on more than 100 healthy and 

pre-diabetics volunteers for a duration of 4 years to track the changes on transcriptomes, 

metabolomes, cytokines, and proteomes, as well as changes in the microbiome [31]. 

The result has broadened the understanding of the association between prediabetes 

biological stages and the identification of inflammation markers in immune signaling. 

A number of large scale association studies based on omics platform to understand the 

pathophysiology of HIV have also been reported [32].  These studies help to understand 

the link between the complex HIV infection process and the interpretation of actionable 

therapeutic or diagnostic targets. 

d. Cardiac disease 

Cardiovascular diseases are the leading causes of morbidity and mortality worldwide 

[33]. Coronary heart disease has found associated with a group of 150 genomes in a 

large scale genomics study [34]. The expression of those genetic loci and the integration 

of multi-omics data transcriptome, epigenome, proteome, metabolome have been 

reported in the literature [35]. A multi-omics study integrating transcriptomics and 
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proteomics has been conducted to evaluate their synergistic effect on the in-vitro 

cardiac hypertrophy model in mice [36]. That study identified 70 candidate disease 

signatures in the steady-state transcript and protein abundance.  

A genomic and transcriptomic study identified 3 master regulatory genes for Coronary 

Artery Disease (CAD) patients in a population of Europe; Stockholm Atherosclerosis 

Gene Expression (STAGE) study [37]. Another study by Feng et al. has utilized 

metabolomics and metagenomics to study the association of gut microbiota with the 

CAD risk. This study has found that GlcNAc-6-P, mannitol, and 15 plasma cholines 

were associated with the higher risk of CAD and showed a correlation of the 

Clostridium sp. and Streptococcus sp. in the intestine [38].  

Diagnosis for myocardial dysfunction and heart failure is an important indicator for the 

care and treatment control. A multi-omics study in myocardial tissue and blood has 

identified epigenetic regions and novel biomarkers for diagnosis of heart failure. The 

result has reported a set of 517 epigenetic loci and a CpGs makers of the heart failure 

diagnosis [39]. Multi-omics study on CAD not only helps to understand the mechanism 

of genetic connection but also helps to identify the key drivers and pathways that 

contribute to the risk [35]. For examples, an integrated network has been developed 

using genome-wide association studies and identified a set of 30 related to CAD [40]. 

e. Others 

 The rise of the omics technologies over the last few years have lead a better 

understanding of the mechanism of diet in metabolic regulation and overall health [41]. 

As a result, a number of literature integrating the multiple omics in nutritional research 

has been reported. Orotic acid-induced fatty liver disease has been investigated using 
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transcriptional and metabolic levels [42]. The study finding has indicated a few 

metabolic pathways that demonstrate the association of orotic acid with fatty liver 

disease. Another example of the multi-omics study by metabolomics, proteomics, and 

trascriptomics is the evaluation of the effect of valproci acid in the liver. The result has 

indicated a perturbation in glycogenolysis pathway by two proteins, glycogen 

phosphorylase and amylo-1,6-glucosidase different from the control [43]. Another 

nutritional multi-omics study has explored the relation of arachidonate-enriched diet 

over eicosapentaenoic (EPA)/docosahexaenoic (DHA) diet, to find any differential 

response on hepatic lipid metabolism [44]. 

Molecular changes during the aging process have an important significance in the 

preservation and treatment of aging person. The multi-omics study that links genomics, 

metabolomics, metagenomics, and transcriptomics have been used to understand the 

human again process [45]. The study has showed the importance of the relationship 

between epigenetic factors such as histone modification and DNA methylation in aging 

[46]. A lipidomics study has suggested a strong association with lipid profile with the 

longevity [47].  On the other hand, an in-vitro study with rat brain has illustrated the 

dynamics of changes in the dark matter of the genome [48]. A combine genomic and 

transcriptomic study has revealed a set of 56 genes that are overexpressed with aging 

and 17 genes that are under-expressed with age [49].  

4. Tools and methods used in the Multi-omics: 

Understanding complex biological problems remain a quest for many omics research. 

With the technological advances, we could now have a huge amount of data from a 

different level of probes for a better and comprehensive look of a disease. Although the 
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integration of these heterogeneous data remains a major challenge in multi-omics field, 

an immense effort by the data scientist and developer has been given. There are a 

number of different data integration methods and tools have been developed and 

applied to the multi-omics dataset (Table 2). These tools are able to integrate genome, 

transcriptome, and proteome and many more [50, 51].  

The web-based method for multi-omics data integration and visualization is a recent 

and modern approach to tackle data integration tools. This process allows users to create 

a job and submit the data to understand the interconnection between the multi-layer 

omics dataset. PaintOmics 3 could be an example [52]. This web tool uses the KEGG 

database to show the integration of the biological pathway. Another good example is 

the LinkedOmics, which has a billion data points combining mass spectrometry (MS)-

based global proteomic and cancer genomic datasets. Users can explore the link 

between these datasets and generate hypotheses for experimental validation [53]. 

Tables 2 listed a few other examples of these types of tools developed for the multi-

omics integration. 

The mathematical integration of the different sources of data with the different noise 

levels, different variables, non –comparable data types and many other data issues are 

also challenging in the multi-omics studies. A number of methods have been developed 

in this regard and mainly divided into two methods; 1) unsupervised data integrating, a 

method that does not assign the response variables before analysis and 2) supervised 

data integration, which assigns the response variables before the analysis [6] (Fig 3). 

Machine learning, Artificial intelligence, Bayesian method, Network-based analysis, 

Kernel method, and many more mathematical methods and their mathematical 
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background have been reported in literature [6, 7]. The second consideration is the 

platform or software used for the data analysis. Some of these tools are based on web 

server, some on C++, R, Matlab, Python and many more. This field of multi-omics 

method and tools are in the developmental stage and many new methods are appearing 

in the literature.  

5. Future Perspectives: 

A growing number of multi-omics studies have been reported in the last couple of years, 

incorporating many different omics platforms, new technology, tools and methods for 

data integration. The multi-omics process provided unprecedented utility and benefits 

that could not be provided by any single omics approach. This is now considered the 

most comprehensive and holistic approach for analyzing the samples and understanding 

between multiple biological phenomena by visualization, linking multiple biological 

pathways, finding association between genotypes and phenotypes and many more. The 

omics platform has opened a new era in biomedical science and the combination of the 

multi-omics is considering the future in this field.  

As the multi-omics platform is getting more mature in terms of the tools and resources, 

it will facilitate the development of newer fields. Multi-omics will help to understand 

the link between the molecular and clinical characteristics of the disease, the discovery 

of biomarkers by pathway analysis and observed the association from a large scale 

mechanistic study. The ongoing effort on the multi-omics and leveraging integrative 

strategies would further improve the application of this filed on the biomedical 

problems solving. 
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6. Conclusion: 

This mini-review provides a concise overview of the multi-omics platform. The 

motivation of the multi-omics and its applications in biomedical problem solving have 

been discussed here. The omics platform integration tools and the methods that require 

special data science background have also been illustrated. The multi-omics is so far 

the most holistic analysis tool and would be the future of the omics fields. 
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5. FIGURES AND TABLES 

 

 

 

 

 Fig 1: The "omics" keyword in Scopus© database from 2015-2019 showing the (a) 

fields of study (b) number of documents and (c) funding organization of –omics study.  
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In this mini review, we will look at the important factors of the multi-omics field and 

then will discuss the applications of multi-omics for the solving of biomedical 

problems. 

 

 

 

 

 

Fig.1. The schematic application of high-throughput and high-resolution–omics 

techniques for multi-omics studies. 
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Fig.2. The mathematical basis of multi-omics data integration methods. 
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Table  1. Application of multi-omics in the biomedical fields. 

Disease Omics technologies Objectives Reference 
Cancer Genomics and 

metabolomics 
To classify the tumor subtypes 13 

Retinal Cancer Transcriptomics, 
metabolomics and 
proteomics 

To profile retinoblastoma cancer cell 14 

Prognostics cancer Genomics and 
transcriptomics 

To discover prognostic cancer subtypes 17 

Renal disorders Proteomics and 
metabolomics 

To correlate vascular changes in diabetics for renal 
disfunction 

26 

Infectious disease Genomics and 
transcriptomics 

To identify genes associated with E. coli, LPS, influenza 
virus, or IFN-β expression on human dendritic cells 

28 

Infectious disease  Proteomics and kinomics To study the interaction between human macrophages and 
Staphylococcus aureus 

29 

Infectious disease Metagenomics, 
metatranscriptomics, and 
metabolomics 

To identify probiotic candidates for the Chytridiomycosis and 
other emerging infectious diseases in wildlife 

30 

Cardiac disease Genomic and 
transcriptomic 

To identify master regulatory genes for coronary artery 
disease 

37 

Cardiac disease Metabolomics and 
metagenomics 

To study the association of gut microbiota with the cardiac 
artery disease risk 

38 

Cardiac disease Multi-omics To identify epigenetic regions and novel biomarkers in 
myocardial tissue and blood for diagnosis of heart failure 

39 
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Fatty liver disease Transcriptomics and 
metabolomics 

To investigate orotic acid-induced fatty liver disease.  42 

Liver disease Metabolomics, 
proteomics, and 
transcriptomics 

To evaluate of the effect of valproci acid in the liver. 43 

Aging process Genomics, metabolomics, 
metagenomics, and 
transcriptomics 

To understand the human again process by molecular 
changes. 

45 

Aging process Genomic and 
transcriptomic 

To identify genes that are overexpressed and under-expressed 
with aging. 

49 
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Table 2: Tools used for multi-omics studies 

Name Data platform Omics techniques Reference 

PaintOmics 3 Web based transcriptomics, 
proteomics and 
metabolomics 

[52] 

web-rMKL Web based,  
Java based 

NA; multiple OMICS data 
types 

[54] 

LinkedOmics Web based genomic, epigenomic, 
transcriptomic, and 

proteomic 

[53] 

KeyPathwayMinerWeb Web based multiple OMICS data 
types 

[55] 

iPath3.0 Web based metabolomics [56] 

GENEASE Web based genomics, reactomics and 
other cancer phenotypes 

[57] 

3Omics Web based transcriptomic, proteomic, 
metabolomic 

[58] 

MixOmics R transcriptomics, 
metabolomics, proteomics, 

metagenomics 

[59] 

 

 


